
SplitStream: High-bandwidth content distribution in a cooperative environment

Miguel Castro1 Peter Druschel2 Anne-Marie Kermarrec1 Animesh Nandi2

Antony Rowstron1 Atul Singh2

1Microsoft Research, 7 J J Thomson Avenue, Cambridge, CB3 0FB, UK.
2Rice University, 6100 Main Street, MS-132, Houston, TX 77005, USA.

Abstract

In tree-based multicast systems, a relatively small number
of interior nodes carry the load of forwarding multicast
messages. This works well when the interior nodes are
dedicated infrastructure routers. But it poses a problem in
cooperative end-system multicast, where participants ex-
pect to contribute resources proportional to the benefit they
derive from using the system. Moreover, many partici-
pants may not have the network capacity and availabil-
ity required of an interior node in high-bandwidth multi-
cast applications. SplitStream is a high-bandwidth content
distribution system based on end-system multicast. It dis-
tributes the forwarding load among all the participants, and
is able to accommodate participating nodes with different
bandwidth capacities. We sketch the design of SplitStream
and present some preliminary performance results.

1 Introduction

End-system or application-level multicast [2, 11, 21, 7, 18,
14, 1] has become an attractive alternative to IP multi-
cast. Instead of relying on a multicast infrastructure in the
network (which is not widely available), the participating
hosts pool their resources to route and distribute multicast
messages using only unicast network services. In this pa-
per, we are particularly concerned with application-level
multicast incooperativeenvironments, where participants
contribute resources in exchange for using the service. In
such environments, participants expect that the forwarding
load be shared among all members.

Unfortunately, conventional tree-based multicast is in-
herently not well matched to a cooperative environment.
The reason is that in any efficient (i.e. low-depth) multi-
cast tree, a small number of interior nodes carry the burden
of splitting and forwarding multicast traffic, while a large
number of leaf nodes contribute no resources. This con-
flicts with the expectation that all members should share
the forwarding load. The problem is further aggravated in
high-bandwidth applications like video or bulk file distri-
bution, where many nodes may not even have the capacity
and availability required of an interior node in a conven-
tional multicast tree. SplitStream is designed to address

these problems.

SplitStream enables efficient cooperative distribution of
high-bandwidth content, whilst distributing the forwarding
load among the participating nodes. SplitStream can also
accommodate nodes with different network capacities and
with asymmetric bandwidth on the inbound and outbound
network paths. Subject to these constraints, it balances the
forwarding load across all the nodes.

The key idea is tosplit the multicast content intok
stripes, and multicast each stripe in a separate multicast
tree. Participants join as many trees as there are stripes
they wish to receive. The aim is to construct thisforestof
multicast trees such that an interior node in one tree is a
leaf node in all the remaining trees. In this way, the for-
warding load can be spread across all participating nodes.
We show that it is possible, for instance, to efficiently con-
struct a forest in which the inbound and outbound band-
width requirements of each node are the same, while main-
taining low delay and link stress across the system.

SplitStream also offers improved robustness to node
failure and sudden node departures. Since ideally, any
given node is an interior node in only one tree, its failure
can cause the temporary loss of at most one of the stripes.
With appropriate data encodings such as erasure coding [3]
of bulk data or multiple description coding (MDC) [13, 15]
of streaming media, applications can thus mask or mitigate
the effects of node failures, even while the affected tree is
being repaired.

The key challenge in the design of SplitStream is to effi-
ciently construct a forest of multicast trees that distributes
the forwarding load, subject to the bandwidth constraints
of the participating nodes, in a decentralized, scalable, and
self-organizing manner. SplitStream relies on a structured
peer-to-peer overlay network called Pastry [19], and on
Scribe [7], an application-level multicast system built upon
this overlay to construct and maintain these trees.

The rest of this paper is organized as follows. Section 2
outlines the SplitStream approach in more detail. A brief
description of Pastry and Scribe is given in Section 3. We
sketch the design of SplitStream in Secition 4. Section 5
describes related work and Section 6 concludes.
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2 The SplitStream approach

In this section, we give a more detailed overview of Split-
Stream’s approach to cooperative, high-bandwidth content
distribution.

Tree-based multicastIn all multicast systems based on
a single tree, participating nodes are either interior nodes
or leaf nodes. The interior nodes carry all the burden of
forwarding multicast messages. In ak-level balanced tree

with arity f , the number of interior nodes isf
k+1−1
f−1 and

the number of leaf nodes isf k. Thus, the fraction of leaf
nodes increases withf . For example, more than half of the
nodes are leaves in a binary tree, and over 90% of nodes
are leaves in a tree with arity 16. In the latter case, the
forwarding load is carried by less than 10% of the nodes;
whilst all nodes have equal inbound bandwidth, the inter-
nal nodes have an outbound bandwidth requirement of 16
times the inbound bandwidth. Even in a binary tree, which
would be impractically deep in most circumstances, the
outbound bandwidth required by the interior nodes is twice
that of their inbound bandwidth.

SplitStream SplitStream is designed to overcome the
inherently unbalanced forwarding load in conventional
tree-based multicast systems. SplitStream strives to dis-
tribute the forwarding load over all participating nodes,
and respects different capacity limits of individual partic-
ipating nodes. SplitStream achieves this by splitting the
multicast content into multiple stripes, and using separate
multicast trees to distribute each stripe.

Figure 1 illustrates how SplitStream balances the for-
warding load among the participating nodes. In this simple
example, the original content is split into two stripes and
multicast in separate trees. For simplicity, let us assume
that the original content has a bandwidth requirement of
B, and that each stripe has half the bandwidth requirement
of the original content. Each node other than the source
subscribes to both stripes, inducing an inbound bandwidth
requirement ofB. As shown in Figure 1 each node is an in-
ternal node in only one tree and forwards the stripe to two
children, yielding an outbound bandwidth requirement of
no more thanB.

In general, the content is split intok stripes. Participat-
ing nodes may subscribe to a subset of the stripes, thus
controlling their inbound bandwidth requirement in incre-
ments ofB/k. Similarly, participating nodes may control
their outbound bandwidth requirement in increments of
B/k by limiting the number of children they adopt. Thus,
SplitStream can accommodate nodes with different band-
widths, and nodes with unequal inbound and outbound net-
work capacities. SplitStream is able to satisfy all partici-
pating nodes as long as the total number of stripes to which
all nodes wish to subscribe does not exceed the total num-
ber of children that all nodes are willing to adopt.

Applications may choose any content encoding that pro-
duces stripes with even bandwidth requirements. In prac-
tice, applications may choose to encode content in a man-
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Figure 1: A simple example illustrating the basic ap-
proach of SplitStream. Original content is split into two
stripes. An independent multicast tree is constructed for
each stripe such that a node is an interior node in one mul-
ticast tree and a leaf in the other.

ner that requires bandwidth greater thanB/k per stripe, in
return for the ability to reconstitute the content from less
thank stripes. For example, a media stream could be en-
coded using MDC so that the video can be reconstituted
from any subset of thek stripes, with video quality propor-
tional to the number of stripes received. Such an encoding
also allows low-bandwidth clients to receive the video at
lower quality.

As another example, erasure codes could be used to
stripe file data, thus allowing the files to be reconstituted
from any sufficiently large subset of the stripe blocks. For
instance, a participant may subscribe to all stripes, but re-
constitute the file as soon as a sufficient number of stripe
blocks has arrived, discarding later arriving stripe blocks.

Using redundant content encodings also improves the
resilience of the system to node failures or sudden depar-
tures of participants. Since a node failure affects at most
one of the stripe trees, erasure codes can mask such fail-
ures. In the case of MDC encoded video, a node failure
may at worst cause an intermittent drop in video quality
while the affected tree is being repaired.

3 Background: Pastry and Scribe

In this section, we briefly sketch Pastry, a scalable, self-
organizing, structured p2p overlay network, and Scribe, a
scalable application-level multicast system based on Pas-
try. Both systems are key building blocks in the design of
SplitStream.

Pastry In Pastry, nodes and objects are assigned random
identifiers (callednodeIdsandkeys, respectively) from a
large, sparse id space. Keys and nodeIds are 128 bits in
length and can be thought of as a sequence of digits in
base2b (b is a configuration parameter with a typical value
of 3 or 4). Given a message and a key, Pastry routes the
message to the node with the nodeId that is numerically
closest to the key, which is called the key’sroot.

In order to route messages, each node maintains a rout-
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ing table and a leaf set. A node’s routing table has about
log2bN rows and2b columns. The entries in rown of the
routing table refer to nodes whose nodeIds share the first
n digits with the local node’s nodeId; the (n+1)th nodeId
digit of a node in columnm of row n equalsm. The col-
umn in rown corresponding to the value of the (n+ 1)th
digits of the local node’s nodeId remains empty. Routing
in Pastry requires that at each routing step, a node normally
forwards the message to a node whose nodeId shares with
the key a prefix that is at least one digit longer than the
prefix that the key shares with the present node’s id. If no
such node is known, the message is forwarded to a node
whose nodeId shares a prefix with the key as long as the
current node, but is numerically closer to the key than the
present node’s id.

Each Pastry node maintains a set of neighboring nodes
in the nodeId space (called the leaf set), both to ensure
reliable message delivery, and to store replicas of objects
for fault tolerance. The expected number of routing hops
is less thanlog2bN. The Pastry overlay construction ob-
serves proximity in the underlying Internet. Each routing
table entry is chosen to refer to a node with low network
delay, among all nodes with an appropriate nodeId pre-
fix. As a result, one can show that Pastry routes have a
low delay penalty: the average delay of Pastry messages is
only approximately twice the IP delay between source and
destination [5]. Similarly, one can show thelocal route
convergenceof Pastry routes: the routes of messages route
to the same key from nearby nodes tend to converge at
a nearby intermediate node. Both of these properties are
important for the construction of efficient multicast trees,
described below. A full description of Pastry can be found
in [19].

Scribe Scribe is an application-level multicast system
built upon Pastry. A pseudo-random Pastry key, known
as thegroupId, is chosen for each multicast group. A
multicast tree associated with the group is formed by the
union of the Pastry routes from each group member to the
groupId’s root (which is also the root of the multicast tree).
Messages are multicast from the root to the members using
reverse path forwarding [9].

The properties of the Pastry overlay ensure that the mul-
ticast trees are efficient. The delay to forward a message
from the root to each group member is low due to the low
delay penalty of Pastry routes. Pastry’s local route conver-
gence ensures that the load imposed on the physical net-
work is small because most message replication occurs at
intermediate nodes that are close in the network to the leaf
nodes in the tree.

Group membership management in Scribe is decentral-
ized and highly efficient, because it leverages the existing,
proximity-aware Pastry overlay. Adding a member to a
group merely involves routing towards the groupId until
the message reaches a member of the tree, followed by
adding the route traversed by the message to the group
multicast tree. As a result, Scribe can efficiently support
large numbers of groups, arbitrary numbers of group mem-

bers, and groups with highly dynamic membership.
The latter property, combined with an anycast [6] prim-

itive recently added to Scribe, can be used to perform
distributed resource discovery. As we will show in the
next section, SplitStream uses this mechanism to discover
nodes with spare forwarding capacity. A full description
and evaluation of Scribe multicast can be found in [7].
Scribe anycast is described in [6].

4 Building SplitStream

In this section, we sketch the design of SplitStream.
Building independent treesSplitStream uses a sepa-

rate Scribe multicast tree for each of thek stripes. Split-
Stream exploits the properties of Pastry routing to ensure
the desired independence. Recall that Pastry normally for-
wards a message towards nodes whose nodeIds share pro-
gressively longer prefixes with the message’s key. Since
a Scribe tree is formed by the routes from all members to
the groupId, the nodeIds of all interior nodes share some
number of digits with the tree’s groupId. Therefore, we
can ensure thatk Scribe trees have a disjoint set of interior
nodes simply by choosing groupIds for the trees that all
differ in the most significant digit.

Settingk = 2b ensures that each participating node has
an equal chance of becoming an interior node in some tree.
If k is chosen such thatk = 2i andi ≤ b, then it is still pos-
sible to ensure this fairness by exploiting certain properties
of the Pastry routing table, but we omit the details to con-
serve space. Without loss of generality, we assume that
k = 2b in the rest of this paper.

Limiting node degree The resulting forest of Scribe
trees satisfies the independence requirement and the
nodes’ constraints on the inbound bandwidth, but it does
not necessarily satisfy the individual nodes’ outgoing
bandwidth constraints. Let us first consider the inbound
bandwidth. A node’s inbound bandwidth is proportional to
the number of stripes to which the node subscribes. Note
that a node has to subscribe to at least one stripe, the one
whose stripeId shares a prefix with its nodeId, because the
node may have to serve as an interior node for that stripe.

The number of children that may attempt to attach to
a node is bounded by its indegree in the Pastry overlay,
which is influenced by the physical network topology. In
general, this number may exceed the number of children a
node is able to support. For a SplitStream node to limit its
outbound network bandwidth, it must limit its outdegree in
the SplitStream forest, i.e., the total number of children it
takes on.

Scribe has a built-in mechanism to limit a node’s outde-
gree. When a node that has reached its maximal outdegree
receives a request from a prospective child, it provides the
prospective child with a list of its current children. The
prospective child then seeks to be adopted by the child
with lowest delay, and so on recursively. In Scribe, this
procedure is guaranteed to terminate because a leaf node
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is required to take on at least one child.
Unfortunately, this procedure is not guaranteed to work

in SplitStream. The reason is that a leaf node in one tree
may be an interior node in another stripe tree, and may
have already reached its outdegree limit with respect to
that stripe tree.

Balancing treesSplitStream uses the following algo-
rithm to resolve the case where a node that has reached its
outdegree limit receives a join request from a prospective
child. First, the node adopts the prospective child regard-
less of the outdegree limit. Then, it evaluates its new set of
children to select a child to reject. This selection is made
in an attempt to maximize the efficiency of the SplitStream
forest.

First, the node looks for children that are subscribed to
stripes whose stripeIds do not share a prefix with the local
node’s nodeId. (How the node could have acquired such
a child in the first place will become clear in a moment).
If multiple such nodes exist, one is chosen randomly. If
no such child exists then the current node is an interior
node for only one stripe tree, and it selects the child whose
nodeId has the shortest prefix match with that stripeId. If
multiple such nodes exist, one is chosen randomly. The
chosen child is then notified that is has been orphaned.

The orphaned child then seeks to locate a new parent
by sending an anycast message to a special Scribe group
called thespare capacity group. All SplitStream nodes
whose number of children is below their limit join this
group. The anycast message is delivered to a leaf node
in the spare capacity group tree that is near the orphan in
the physical network. This node checks whether it receives
any of the stripes to which the orphaned child seeks to sub-
scribe. If so, it verifies that the orphan is not an ancestor in
the corresponding stripe tree, which would create a cycle.
If both tests succeed for some stripe, the node takes on the
orphan as a child; if as a result, the node has now reached
its outdegree limit, it leaves the spare capacity group. If
one of the tests fails, the node forwards the message to its
parent, starting a depth-first search (DFS) of the spare ca-
pacity group tree until an appropriate member is found.

This procedure is guaranteed to locate an appropriate
parent for the orphan if one exists. Moreover, the proper-
ties of Scribe trees and the DFS of the spare capacity tree
ensure that the parent is near the orphan in the physical
network, among all prospective parents. This provides low
delay and low link stress in the physical network. How-
ever, the algorithm as described may sacrifice tree inde-
pendence, because the new parent may be already an inte-
rior node in another stripe tree. Thus, its failure may cause
the temporary loss of more than one stripe for some nodes.

It is possible to minimize this partial loss of indepen-
dence at the expense of higher delay, link stress, and cost of
the forest construction. However, complete independence
is generally only feasible if there is some excess forward-
ing capacity, where the total outdegree of all nodes exceeds
the total indegree of all nodes. One approach to preserving
independence is to add a third test during the DFS in the

spare capacity group tree, which verifies that the prospec-
tive parent’s nodeId shares a prefix with the stripeId to
which the orphan subscribes. This ensures independence,
but may require a more extensive exploration of the spare
capacity group tree, may yield a parent that is more distant
in the physical network, and may not always locate a par-
ent in the absence of sufficient excess forwarding capacity.
One may balance these concerns by limiting the scope of
the DFS, and relax the third test if no parent was found
within that scope. SplitStream allows applications to con-
trol this tradeoff between independence, delay, link stress,
total required forwarding capacity and overhead of forest
construction according to its needs.

Preliminary results We have performed a prelimi-
nary performance evaluation of SplitStream, by running
50,000 SplitStream nodes over an emulated network with
5050 core routers based on the Georgia Tech network
topology generator. We constructed a SplitStream forest
with 16 stripes, and assigned per-node inbound and out-
bound bandwidth limits that follow a distribution mea-
sured among Gnutella clients in May 2001 [20].

The result are very encouraging. During the SplitStream
forest construction (50,000 nodes, 16 stripes), the mean
and median number of control messages handled by each
node were 33 and 57, respectively. When multicasting a
message in each stripe, the medians of the relative aver-
age delay penalty (RAD) and the relative maximum delay
penalty (RMD), compared to IP multicast, where 2.33 and
3.64, respectively. These value are about 1.5 and 2 times
higher, respectively, than the values measured in a single
Scribe tree on the same topology. This increase reflects the
principal cost of balancing the forwarding load across all
participants in SplitStream.

We also considered the degree of independence in
the SplitStream forest. Without any of the indendence-
preserving techniques described above, and with a highly
constrained bandwidth allocation (outbound bandwidth
not to exceed inbound bandwidth at any node), we found
that over 95% of the nodes had independent (i.e., node dis-
joint) paths to the source in 13 or more of the 16 stripes to
which they subscribed. Thus, even in pessimal cases, the
loss of independence is modest. A more comprehensive
evaluation of SplitStream will be presented in a forthcom-
ing full paper.

5 Related work

Many application-level multicast systems have been pro-
posed recently, e.g. [8, 14, 18, 21, 7, 1]. All are based on a
single multicast tree.

Several systems exist that use end-system multicast
for video distribution, notably Overcast [14] and Sprea-
dIt [10]. Both systems create a single multicast tree. Over-
cast relies on dedicated servers, whilst both SpreadIt and
SplitStream utilise the participating clients. However, un-
like SpreadIt, SplitStream distributes forwarding load over
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all participants using multiple multicast trees, thereby re-
ducing the bandwidth demands on individual peers.

Nguyen and Zakhor [16] propose streaming video from
multiple sources concurrently, thereby exploiting path di-
versity and increasing tolerance to packet loss. They sub-
sequently extend the work in [16] to use Forward Error
Correction [3] encodings. The work assumes that the
client is aware of the set of servers from which to receive
the video. SplitStream constructs multiple endsystem-
based multicast trees in a decentralized fashion and is
therefore more scalable.

CoopNet [17], like SplitStream, utilises multiple trees
and stripes video using MDC. Each stripe is delivered to
the client using a different source. When a server is over-
loaded, clients are ’redirected’ to other clients, thereby cre-
ating a distribution tree routed at the server. There are
two fundamental differences between CoopNet and Split-
Stream:(i) CoopNet uses a centralised algorithm (running
on the server) to build the trees whilst SplitStream is com-
pletely decentralised; and(ii) CoopNet does not attempt
to manage the bandwidth contribution of individual nodes;
however, it is possible to add this capability to CoopNet.

In [4], algorithms and content encodings are described
that enable parallel downloads and increase packet loss
resilience in richly connected, collaborative overlay net-
works by exploiting downloads from multiple peers. Split-
Stream provides a complete system for content distribution
in collaborative overlay networks. It explicitly stripes con-
tent and creates a tree for each stripe. Also, SplitStream’s
main goal is to spread the forwarding load across all par-
ticipants.

FCast [12] is a reliable file transfer protocol based on IP
multicast. It combines a Forward Error Correction [3] en-
coding and a data carousel mechanism. Instead of relying
on IP multicast, FCast could be easily built upon Split-
Stream, for example, to provide software updates cooper-
atively.

6 Conclusions

We have sketched the design of SplitStream, a high-
bandwidth content distribution system based on end-
system multicast in cooperative environments. Prelimi-
nary performance results are very encouraging. The sys-
tem is able to distribute the forwarding load among the
participating nodes, subject to individual node bandwidth
limits. When combined with redundant content encoding,
SplitStream yields resilience to node failures and unan-
nounced departures, even while the affected multicast tree
is repaired. The overhead of the forest construction is mod-
est and well balanced, and the resulting increase in delay
penalty and link stress is modest, when compared to a con-
ventional tree-based endsystem multicast system.

We are currently exploring various optimizations in con-
structing the SplitStream forest, guided by application
needs. A forthcoming paper will present comprehensive

results, including results of experiments using the Planet-
Lab Internet testbed.
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